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Abstract 

We show that there is a counter-example for the uniqueness of the sink in 
symbiosis system under assumptions given in [1]. We also give a suitable  
condition for the uniqueness of the sink. 

1. Introduction 

Let x and y denote the populations of two species. The generalized 
equations of growth of the two populations are written in the form 

( )
( )




=′
=′
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,,

yyxNy
xyxMx

 (1) 

where the growth rates M and N are functions of both variables. We 
assume that x and y are nonnegative, and M and N are sufficiently 
smooth. We consider the case that x and y are in symbiosis, that is, we 
make the following assumptions on M and N: 
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(H1) An increase of either population leads to an increase in the 
growth rate of the other. Hence, 

( ) ( ) ,0,and,0, >> yxNyxM xy  

where yMM y ∂∂=  and .xNNx ∂∂=  

(H2) The total food supply is limited. Hence, for some ,0,0 >> BA  

we have 

( ) ,for,0, AxyxM ><  

( ) .for,0, ByyxN ><  

 (H3) If both populations are very small, then they both increase. 
Hence, 

( ) ( ) .00,0and,00,0 >> NM  

We also assume that the intersections of the curves ( )01−M  and ( )01−N  

are finite, and that all are transverse. 

Under these assumptions, the analysis of (1) is suggested as an 
exercise in [1] such that ‘show that, if ( ) 0, <yxMx  and ( ) ,0, <yxN y  

there is a unique sink Z, and Z is the ω-limit set for all ( )yx,  with ,0>x  

.’0>y  However, there is a counter-example for the uniqueness of the 

sink under such assumptions. The purpose of this paper is to show such a 
counter-example, and give a sufficient condition for the uniqueness of the 
sink. 

2. Counter-Example for the Uniqueness of the Sink 

Define ( )yxM ,  and ( )yxN ,  as 
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1. We have 
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2. Since ( ) 6
1

6
4 <

+ −− ye
 and ( ) ,6

1
6

4 <
+ −− xe

 we have 

( ) ( ) .7for0,and,7for0, ><>< yyxNxyxM  

3. Since ,61 4 >+ e  we have 

( ) ( ) .0
1

610,0and,0
1
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e
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Also, we have 

( ) ( ) .01,and,01, <−=<−= yxNyxM yx  

 

Figure 1. The phase portrait of (1) with (2). The dotted curves represent 

( )01−=µ M  and ( ).01−= Nν  
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Thus, all assumptions on M and N given in [1] for the uniqueness of 
the sink are established. However, the phase portrait is given by Figure 
1, which shows that there exist two sinks. Note that, the dotted curves 

represent ( )01−=µ M  and ( ).01−= Nν  

The intersections of µ  and ν  are given by roots of ( ) ( )xxNxxM ,, =  
.0=  We have 
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Therefore, there exist at least three equilibrium ( ) ( ),,,, 2211 xxxx  
( )33, xx  such that 

.76421 321 <<<=<<< xxx  

By the implicit function theorem, we can express ( )01−=µ M  by ( )xy1  
such that 
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Also, ( )01−= Nν  is given by ( )xy2  such that 

( ) ( ) .
2

, 3

22

22
y

xyyyxxyyxx

y
x

N

NNNNNNN
xyN

Nxy
+−

−=′′−=′  



THE UNIQUENESS OF THE SINK IN SYMBIOSIS SYSTEM … 425

Here, we have 
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Now, we know that if 4<x  and ,4<y  then ( ) 01 <′′ xy  and ( ) .02 >′′ xy  

This implies that ( ) ( ),1211 xyxy ′>′  because ( ) ( )1211 xyxy ′<′  contradicts 

that ( ) ( ).44 21 yy =  Hence, we have 
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The Jacobian matrix at ( )11, xx  is given by 

( ) ( )
( ) ( ) .,,
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111111

111111








= xxNxxxNx

xxMxxxMx
A

yx

yx  

We have ,0tr 11 <+= yx NxMxA  and det ( ) .02
1 >−= xyyx NMNMxA  

Thus, we have that ( )11, xx  is a sink. 

In the same way, we can show that ( )33, xx  is a sink, too. Therefore, 

there exist at least two sinks for (1) with (2). 
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3. Sufficient Condition of the Uniqueness of the Sink 

Theorem 1. Assume that ( )yxM ,  and ( )yxN ,  satisfy (H1)-(H3). 

Moreover, we make the following additional assumptions on M and N: 

(H4) ( ) ( ) .0,0, << yxNandyxM yx  

(H5) ( ) ( ) ( ) .0,,0,,0, ≤≤≤ yxMandyxMyxM yyxyxx  

(H6) ( ) ( ) ( ) .0,,0,,0, ≤≤≤ yxNandyxNyxN yyxyxx  

Then (1) has a unique sink Z, and Z is the ω-limit set for all ( )yx,  with 

.0,0 >> yx  

Proof. Using the implicit function theorem, we can express =µ  

( )01−M  by ( )xy1  such that 
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From (H1), (H4), and (H5), we have ( ) 01 >′ xy  and ( ) 01 ≥′′ xy  for all 

.0≥x  Hence, ( )xy1  is downwards convex. Also, we can express =ν  

( )01−N  by ( )xy2  such that 
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From (H1), (H4), and (H6), we have ( ) 02 >′ xy  and ( ) 02 ≤′′ xy  for all 

.0≥x  Hence, ( )xy2  is upwards convex. 

From (H2) and (H3), there exist 1a  and 2a  such that ≤<< 210 aa  

( ) ,0, 11 =ayA  and ( ) .lim 12 ∞=→ xyax  Also, from (H2) and (H3), there 

exists b such that ( ) ,0,0 1 byBb =<<  and ( ) .1 Bxy <  Therefore, there 

exists a unique intersection point ( )∗∗ yx ,  of the curves µ  and ν  such 

that 
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( ) ( ) .021 >′>′ ∗∗ xyxy  

This implies that 
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The Jacobian matrix at ( )∗∗ yx ,  is given by 

( ) ( )
( ) ( )
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Then, we have ,0tr <+= ∗∗
yx NyMxA  and det ( yyx MNMyxA −= ∗∗  

) .0>xN  Thus, we have that ( )∗∗ yx ,  is the sink.   

Example. Define ( )yxM ,  and ( )yxN ,  as 

( ) ( )
( ) ( )
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We can easily confirm the assumptions (H1)-(H6) of Theorem 1 as follows. 

1. ( ) ( ) .03,,03, >=>= −− x
x

y
y eyxNeyxM  

2. ( ) ( ) .4for0,and,0for0, ><>< yyxNxyxM  

3. ( ) ( ) .010,0,010,0 >=>= NM  

4. ( ) ( ) .01,,01, <−=<−= yxNyxM yx  

5. ( ) ( ) ( ) .03,,0,,0, ≤−=== −y
yyxyxx eyxMandyxMyxM  

6. ( ) ( ) ( ) .0,,0,,03, ==≤−= − yxNandyxNeyxN yyxy
x

xx  

Therefore, Theorem 1 implies that there exists a unique sink for (1) with 
(3). The phase portrait is given by Figure 2 in which the dotted curves 

represent ( )01−=µ M  and ( ).01−= Nν  This figure shows that there 
exists a unique sink.   
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Figure 2. The phase portrait of (1) with (3). The dotted curves represent 

( )01−=µ M  and ( ).01−= Nν  
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