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Abstract

We show that there is a counter-example for the uniqueness of the sink in
symbiosis system under assumptions given in [1]. We also give a suitable
condition for the uniqueness of the sink.

1. Introduction

Let x and y denote the populations of two species. The generalized

equations of growth of the two populations are written in the form

{x’ = M(x, y),

1
y' = N(x, )y, @

where the growth rates M and N are functions of both variables. We
assume that x and y are nonnegative, and M and N are sufficiently
smooth. We consider the case that x and y are in symbiosis, that is, we

make the following assumptions on M and IV:
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(H1) An increase of either population leads to an increase in the
growth rate of the other. Hence,

M,(x, y) >0, and N,(x, y) >0,
where M, = oM /dy and N, = 0N / ox.

(H2) The total food supply is limited. Hence, for some A > 0, B > 0,

we have

M(x, y)<0, for x> A,
N(x, y)<0, for y>B.

(H3) If both populations are very small, then they both increase.

Hence,

M(0,0)>0, and N(0,0)> 0.

We also assume that the intersections of the curves M ~1(0) and N71(0)
are finite, and that all are transverse.

Under these assumptions, the analysis of (1) is suggested as an
exercise in [1] such that ‘show that, if M, (x, y) <0 and N,(x, y) <0,
there is a unique sink Z, and Z is the @-limit set for all (x, y) with x > 0,

y > 0. However, there is a counter-example for the uniqueness of the

sink under such assumptions. The purpose of this paper is to show such a
counter-example, and give a sufficient condition for the uniqueness of the

sink.

2. Counter-Example for the Uniqueness of the Sink

Define M(x, y) and N(x, y) as

M(x, y):].—X'Ff,
16+e(y 4) 2

N —l— 2y
(o, ¥) M=
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1. We have
Ge—(v-%) GeY+4
M, (x, y) = = > 0,
Y 1+e U M)2 (&7 +e)
66_(x_4) 66x+4
N,(x, y) = = > 0.
* (1+ e @) P (eF +et)?
2. Since 6 < 6 and 6 < 6, we have
Sinee 6 e <8

M(x, y)<0 for x>7, and N(x,y)<0 for y>T7.

3. Since 1 +e* > 6, we have

M(0,0)=1-

8 >0, and N(O0)=1-—2

> 0.
1+e 1+e4

Also, we have

M,(x, y)=-1<0, and N,(x,y)=-1<0.

Figure 1. The phase portrait of (1) with (2). The dotted curves represent
p = MY0)and v = N71(0).
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Thus, all assumptions on M and N given in [1] for the uniqueness of
the sink are established. However, the phase portrait is given by Figure
1, which shows that there exist two sinks. Note that, the dotted curves

represent p = M1(0) and v = N~1(0).

The intersections of u and v are given by roots of M(x, x) = N(x, x)

= 0. We have

ML) =—2 >0
l+e
2
M(2,2)=-1+ 62:5_‘32<0,
l+e l+e
6
M(4,4) = -3+ —— =0,
l1+e
2
M6, 6) = 5+—— =< =25,
1+e 1+e
M(7,7)= -6+ 63:— 63<O.
l+e 1+e

Therefore, there exist at least three equilibrium (x;, x;), (xg, x9),

(x3, x3) such that

l<x; <2<x9=4<6<x3<T.

By the implicit function theorem, we can express p = M 1(0) by y(x)
such that

M M M2 - 2M M. M, + M, M?
yilx) = - 775, 3®) = - :
M, M;

Also, v = N71(0) is given by yy(x) such that

N N, N? -2N NN, + N, N?
ya(x) = -5, ¥5(x) = - :
N, Ni
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Here, we have

B (e? —e)

Mxx(x> y) = Mxy(x’ y) =0, Myy(x’ y) = 4)3 ’

(e +e
and

6ex+4(ex _ 84)

(e +e

Nxx(x’ y) == ny(x’ y) = Nyy(x’ y) = 0.

Thus, we have

, e? +e*)? , 1 3
yi(x) = (GeT‘l) >0, yx)= 36 ¢ 2+ (¥ —et) (&7 + e,
and
, 66x+4 ) 66x+4(ex _ 64)
yox) = ——— >0, y3(x)= ——-———
(e* + et )2 (e* + et )3

Now, we know that if x < 4 and y < 4, then y{(x) < 0 and y5(x) > 0.
This implies that yj(x;) > y5(x;), because yi(x1) < y5(x1) contradicts
that y;(4) = y9(4). Hence, we have

_ Mx(xl’ xl) > Nx(xl’ xl)‘
My(xla x1) Ny(xh x1)

The Jacobian matrix at (x;, x; ) is given by

s (lex(xl’ x1) x My (xq, % )J
%Ny (21, %) x1Ny(x1, x1))

We have trA = x; M, +xN, <0, and det A = x%(MxNy -M,N,)>0.
Thus, we have that (x;, x; ) is a sink.

In the same way, we can show that (x5, x3) is a sink, too. Therefore,

there exist at least two sinks for (1) with (2).
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3. Sufficient Condition of the Uniqueness of the Sink

Theorem 1. Assume that M(x, y) and N(x, y) satisfy (H1)-(H3).

Moreover, we make the following additional assumptions on M and N:
(H4) M, (x, y) <0 and N,(x, y) < 0.
(H5) My (x, y) <0, My (x, y) <0, and M, (x, y) < 0.
(H6) N,y (x, ¥) <0, Ny(x, y) <0, and N, (x, y) < 0.

Then (1) has a unique sink Z, and Z is the w-limit set for all (x, y) with
x>0,y>0.

Proof. Using the implicit function theorem, we can express p =

M71(0) by y(x) such that

M. M3} -2M M M, + M, M?

)= e gy = MMy T2 Wy MM
M, M§

From (H1), (H4), and (H5), we have yj(x) >0 and »{(x)>0 for all

x > 0. Hence, y;(x) is downwards convex. Also, we can express v =

N71(0) by yy(x) such that

X

, N . N.N% 2N, N.N, + N, N2
Yolw) = -5 yhle) = -—— S IR
y N3

From (H1), (H4), and (H6), we have yj(x) >0 and y5(x) <0 for all

x > 0. Hence, yy(x) is upwards convex.

From (H2) and (H3), there exist a; and ag such that 0 < a; < ag <
A, y1(a;) =0, and lim,_,,, y(x) = ». Also, from (H2) and (H3), there
exists b such that 0 < b < B, y;(0) = b, and y;(x) < B. Therefore, there

exists a unique intersection point (x*, y*) of the curves u and v such

that
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yi(x%) > yp(x") > 0.
This implies that

ML YY) Nyt
M, (", y")  Ny(z*, »")

The Jacobian matrix at (x*, y*) is given by
_ x*Mx(x*, y*) x*My(x*, y*)
YN, (x%, ¥") YN,y (x%, ")
Then, we have trA = x*M, + y*Ny <0, and det A = x*y*(MxNy -M,
N, ) > 0. Thus, we have that (x*, y*) is the sink. O

Example. Define M(x, y) and N(x, y) as

{M(x, y)=1-x+31-e7), ®)

N(x, y)=1+31-e*)-y.
We can easily confirm the assumptions (H1)-(H6) of Theorem 1 as follows.
L My(x, y) =3¢ >0, Ny(x, y) = 3¢™ > 0.
2. M(x, y) <0 for x >0, and N(x, y) <0 for y > 4.
3. M(0,0)=1>0, N0,0)=1>0.

4. My(x, y)=-1<0, Ny(x, y) = -1<0.
5. My, (x, y) = 0, My, (x, y) = 0, and M, (x, y) = -3e™ < 0.

6. Ny(x, y) = -3¢ <0, Ny(x, y) =0, and N,,(x, y) = 0.

Therefore, Theorem 1 implies that there exists a unique sink for (1) with
(3). The phase portrait is given by Figure 2 in which the dotted curves

represent p = M 1(0) and v = N71(0). This figure shows that there

exists a unique sink. O
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Figure 2. The phase portrait of (1) with (3). The dotted curves represent
nw=M"10) and v = N}(0).
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